数学 百文网手机站

高一数学《》重点知识点归纳

时间:2022-12-07 12:07:42 数学 我要投稿

高一数学《集合》重点知识点归纳

  在年少学习的日子里,大家对知识点应该都不陌生吧?知识点就是学习的重点。想要一份整理好的知识点吗?下面是小编为大家整理的高一数学《集合》重点知识点归纳,希望对大家有所帮助。

高一数学《集合》重点知识点归纳

  高一数学《集合》重点知识点归纳1

  一.知识归纳:

  1.集合的有关概念。

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N*

  2.子集、交集、并集、补集、空集、全集等概念。

  1)子集:若对x∈A都有x∈B,则A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )

  3)交集:A∩B={x x∈A且x∈B}

  4)并集:A∪B={x x∈A或x∈B}

  5)补集:CUA={x x A但x∈U}

  注意:①? A,若A≠?,则? A ;

  ②若 , 则 ;

  ③若 且 ,则A=B(等集)

  3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:

  (1) 与 、的区别;

  (2) 与 的区别;

  (3) 与 的区别。

  4.有关子集的几个等价关系

  ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

  ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

  5.交、并集运算的性质

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

  ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  二.例题讲解:

  【例1】已知集合M={xx=+ ,∈Z},N={xx= ,n∈Z},P={xx= ,p∈Z},则M,N,P满足关系

  A) M=N P B) M N=P C) M N P D) N P M

  分析一:从判断元素的共性与区别入手。

  解答一:对于集合M:{xx= ,∈Z};对于集合N:{xx= ,n∈Z}

  对于集合P:{xx= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6+1表示被6除余1的数,所以M N=P,故选B。

  分析二:简单列举集合中的元素。

  解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

  = ∈N, ∈N,∴M N,又 = M,∴M N,

  = P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

  点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

  变式:设集合 , ,则( B )

  A.M=N B.M N C.N M D.

  解:

  当 时,2+1是奇数,+2是整数,选B

  【例2】定义集合A*B={xx∈A且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为

  A)1 B)2 C)3 D)4

  分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

  解答:∵A*B={xx∈A且x B}, ∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。

  变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

  A)5个 B)6个 C)7个 D)8个

  变式2:已知{a,b} A {a,b,c,d,e},求集合A.

  解:由已知,集合中必须含有元素a,b.

  集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

  评析 本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有 个 .

  【例3】已知集合A={xx2+px+q=0},B={xx2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

  解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

  ∴B={xx2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

  ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1,

  ∴ ∴

  变式:已知集合A={xx2+bx+c=0},B={xx2+x+6=0},且A∩B={2},A∪B=B,求实数b,c,的值.

  解:∵A∩B={2} ∴1∈B ∴22+?2+6=0,=-5

  ∴B={xx2-5x+6=0}={2,3} ∵A∪B=B ∴

  又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

  ∴b=-4,c=4,=-5

  【例4】已知集合A={x(x-1)(x+1)(x+2)>0},集合B满足:A∪B={xx>-2},且A∩B={x1<>< p="">

  分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

  解答:A={x-2<><-1或x>1}。由A∩B={x1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。<-1或x>

  <><-1或x>

  综合以上各式有B={x-1≤x≤5}

  变式1:若A={xx3+2x2-8x>0},B={xx2+ax+b≤0},已知A∪B={xx>-4},A∩B=,求a,b。(答案:a=-2,b=0)

  点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

  变式2:设M={xx2-2x-3=0},N={xax-1=0},若M∩N=N,求所有满足条件的a的集合。

  解答:M={-1,3} , ∵M∩N=N, ∴N M

  ①当 时,ax-1=0无解,∴a=0 ②

  分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

  解答:(1)若 , 在 内有有解

  令 当 时,

  所以a>-4,所以a的取值范围是

  变式:若关于x的方程 有实根,求实数a的取值范围。

  解答:

  点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

  三.随堂演练

  A选择题

  1. 下列八个关系式①{0}= ② =0 ③ { } ④ { } ⑤{0}

  ⑥0 ⑦ {0} ⑧ { }其中正确的个数

  (A)4 (B)5 (C)6 (D)7

  2.集合{1,2,3}的真子集共有

  (A)5个 (B)6个 (C)7个 (D)8个

  3.集合A={x } B={ } C={ }又 则有

  (A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一个

  4.设A、B是全集U的两个子集,且A B,则下列式子成立的是

  (A)CUA CUB (B)CUA CUB=U

  (C)A CUB= (D)CUA B=

  5.已知集合A={ }, B={ }则A =

  (A)R (B){ }

  (C){ } (D){ }

  6.下列语句:(1)0与{0}表示同一个集合; (2)由1,2,3组成的集合可表示为

  {1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2}; (4)集合{ }是有限集,正确的是

  (A)只有(1)和(4) (B)只有(2)和(3)

  (C)只有(2) (D)以上语句都不对

  7.设S、T是两个非空集合,且S T,T S,令X=S 那么S∪X=

  (A)X (B)T (C) (D)S

  8设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为

  (A)R (B) (C){ } (D){ }

  B填空题

  9.在直角坐标系中,坐标轴上的点的集合可表示为

  10.若A={1,4,x},B={1,x2}且A B=B,则x=

  11.若A={x } B={x },全集U=R,则A =

  12.若方程8x2+(+1)x+-7=0有两个负根,则的取值范围是

  13设集合A={ },B={x },且A B,则实数的取值范围是。

  14.设全集U={x 为小于20的非负奇数},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,则A B=

  C解答题

  15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求实数a。

  16(12分)设A= , B= ,

  其中x R,如果A B=B,求实数a的取值范围。

  高一数学《集合》重点知识点归纳2

  集合与元素

  一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

  例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;

  而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

  班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

  解集合问题的关键

  解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。

  高一数学《集合》重点知识点归纳3

  一:函数及其表示

  知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

  1. 函数与映射的区别:

  2. 求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

  ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

  ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

  ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

  ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

  ⑥复合函数的定义域是复合的各基本的函数定义域的交集。

  ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

  3. 求函数值域

  (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;

  (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;

  (3)、判别式法:

  (4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;

  (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;

  (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;

  (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;

  (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;

  (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

  高一数学《集合》重点知识点归纳4

  函数的概念

  函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.

  (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

  (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  函数的三要素:定义域、值域、对应法则

  函数的表示方法:

  (1)解析法:明确函数的定义域

  (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

  (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

  4、函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

  (3)函数图像平移变换的特点:

  1)加左减右——————只对x

  2)上减下加——————只对y

  3)函数y=f(x)关于X轴对称得函数y=-f(x)

  4)函数y=f(x)关于Y轴对称得函数y=f(-x)

  5)函数y=f(x)关于原点对称得函数y=-f(-x)

  6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得

  函数y=|f(x)|

  7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

  高一数学《集合》重点知识点归纳5

  【(一)、映射、函数、反函数】

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

  注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

  ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

  【(二)、函数的解析式与定义域】

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的.对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.

  (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.

  【(三)、函数的值域与最值】

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

  (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

  如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

  【(四)、函数的奇偶性】

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

  注意如下结论的运用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数的复合函数的奇偶性通常是偶函数;

  (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

  3、有关奇偶性的几个性质及结论

  (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

  (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

  (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

  (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

  (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

  (6)奇偶性的推广

  函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

  【(五)、函数的单调性】

  1、单调函数

  对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.

  对于函数单调性的定义的理解,要注意以下三点:

  (1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.

  (2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.

  (3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.

  (4)注意定义的两种等价形式:

  设x1、x2∈[a,b],那么:

  ①在[a、b]上是增函数;

  在[a、b]上是减函数.

  ②在[a、b]上是增函数.

  在[a、b]上是减函数.

  需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.

  (5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.

  5、复合函数y=f[g(x)]的单调性

  若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.

  在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.

  6、证明函数的单调性的方法

  (1)依定义进行证明.其步骤为:

  ①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.

  (2)设函数y=f(x)在某区间内可导.

  如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.

  【(六)、函数的图象】

  函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.

  求作图象的函数表达式

  与f(x)的关系

  由f(x)的图象需经过的变换

  y=f(x)±b(b>0)

  沿y轴向平移b个单位

  y=f(x±a)(a>0)

  沿x轴向平移a个单位

  y=-f(x)

  作关于x轴的对称图形

  y=f(|x|)

  右不动、左右关于y轴对称

  y=|f(x)|

  上不动、下沿x轴翻折

  y=f-1(x)

  作关于直线y=x的对称图形

  y=f(ax)(a>0)

  横坐标缩短到原来的,纵坐标不变

  y=af(x)

  纵坐标伸长到原来的|a|倍,横坐标不变

  y=f(-x)

  作关于y轴对称的图形

  【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

  ①求证:f(0)=1;

  ②求证:y=f(x)是偶函数;

  ③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.

  思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.

  解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.

  ②令x=0,则有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.

  ③分别用(c>0)替换x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=-f(x).

  两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

  所以f(x)是周期函数,2c就是它的一个周期.

【高一数学《》重点知识点归纳】相关文章:

初中数学圆知识点重点归纳01-26

高三数学重点知识点归纳07-23

初三数学重点知识点的归纳11-24

高一历史重点知识点归纳总结10-19

高一政治重点知识点归纳总结11-25

高一政治重点知识点归纳提纲11-28

高一必备的政治重点知识点归纳11-28

高一政治重点知识点整理归纳11-29

高一化学重点知识点归纳总结11-01